SNe Ia growth-rate measurements with Rubin-LSST simulations: intrinsic scatter systematics
B. Carreres, R. Chen, E. Peterson, D. Scolnic, D. Rosselli, C. Ravoux et al.
\(f\sigma_8\): a probe for gravity and dark energy
Image credits: Illustris TNG
How to estimate velocities from SNe Ia?
SNe Ia are standard candles that allow to measure distances and to build a Hubble diagram
Velocities can be expressed as
$\hat{v} = -\frac{c\ln10}{5}\left(\frac{(1 + z)c}{H(z)r(z)} - 1\right)^{-1}\Delta\mu$
In practice SNe Ia are not perfectly standard and the Hubble diagram residuals are noisy!
The intrinsic scatter of SNe Ia
We know that intrinsic scatter has a color dependance!
In this work we will consider 4 models of intrinsic scatter:
Random achromatic scatter
Unrealistic
The G10 model (Guy et al. 2010): $\sim 70\%$ achromatic / $\sim 30\%$ chromatic
Historically used (Pantheon, Pantheon+)
The C11 model (Chotard et al. 2011): $\sim 30\%$ achromatic / $\sim 70\%$ chromatic
Historically used (Pantheon, Pantheon+)
The BS21 model (Brout et al. 2021) with its parameters fitted in Popovic et al. 2023 (P23): dust-based model Currently favored by data (DES 5 year)
Why is SNe Ia intrinsic scatter a concern?
Intrinsic scatter is the most important systematic for the DES 5 year analysis of the dark energy equation of state parameter $w$ (Vincenzi et al. 2024).
Rubin-LSST Simulations
We used the SNANA software (Kessler et al. 2009) to simulate the 10 years of the Rubin-LSST survey!
Simulation of the SN Ia hosts
8 mocks cut from the (2 Gpc $h^{-1}$)$^3$ box of the Uchuu UniverseMachine galaxy catalog (Ishiyama et al. 2021, Aung et al. 2023)
We simulated SN Ia parameters correlations with their host properties:
SN Ia rate - Host mass correlation from Wiseman et al. 2021
SN Ia parameters - Host mass correlation from Popovic et al. 2021
${\color{red}M_B}$, ${\color{red}\alpha}$, ${\color{red}\beta}$, ${\color{red}\gamma}$ and ${\color{red}\sigma_\mathrm{int}}$ will be fitted along $f\sigma_8$
Running an extra-large simulations ($\sim40\times$ LSST) and fitting the hubble diagram
Binning over the parameters $p=\left\{z_\mathrm{obs}, x_1, c, M_\mathrm{host}\right\}$
Computing the correction in each cell $\delta_\mathrm{corr.} = \left<\mu_\mathrm{obs} - \mu_\mathrm{fid}\right>_\mathrm{cell}$
Interpolate over the cells to obtain $\delta_\text{corr.}(p)$
${\color{red}M_B}$, ${\color{red}\alpha}$, ${\color{red}\beta}$, ${\color{red}\gamma}$ and ${\color{red}\sigma_\mathrm{int}}$ are fitted prior to $f\sigma_8$
Fitting for $f\sigma_8$
We fit for $f\sigma_8$ using the Maximum likelihood method with the FLIP package (see Corentin' talk)
The data vector are the estimated velocities:
$$\hat{v} = -\frac{c\ln10}{5}\left(\frac{(1 + z)c}{H(z)r(z)} - 1\right)^{-1}\Delta\mu$$
$$\Delta\mu = \mu_\mathrm{obs} - \mu_\mathrm{model}(z_\mathrm{obs})$$
The covariance of the velocity field is:
$$\text{C}_{ij}^{vv} \propto ({\color{red}f\sigma_8})^2 \int_{k_\mathrm{min}}^{k_\mathrm{max}} P(k)D_u^2(k; {\color{red}\sigma_u}) W_{ij}(k; \mathbf{r}_i, \mathbf{r}_j) {\rm d}k
$$
The observational covariance is:
$$C^{vv, \mathrm{obs}} = \left[\frac{c\ln10}{5}\left(\frac{(1 + z)c}{H(z)r(z)} - 1\right)^{-1}\right]^2\text{diag}\left[\sigma_\mu^2\right]$$
The total covariance is:
$\text{C} = \text{C}^{vv}({\color{red}f\sigma_8},{\color{red}\sigma_u}) + C^{vv, \mathrm{obs}} + {\color{red}\sigma_v}^2 \mathbf{I}$
Calibration of $\sigma_u$
Empirical damping introduced in Koda et al. 2014: $D_u = \text{sinc}(k\sigma_u)$
From a fit of true vel. from randomly sampled galaxies of the Uchuu simulation we found $\sigma_u \simeq 21 \text{Mpc }h^{-1}$
Results: Estimated velocities
We only consider SNe Ia at $0.02 < z < 0.1$, $N_\text{SN} \sim 8000$
Results: $f\sigma_8$ fit for different scatter model
RND - Similar results: $\sigma_{f\sigma_8}\sim 13\%$
G10 - Similar results: $\sigma_{f\sigma_8}\sim 12\%$
C11 - Similar results: $\sigma_{f\sigma_8}\sim 10\%$
P23 - Standard fit: $\sigma_{f\sigma_8}\sim 14\%$ P23 - BBC fit: $\sigma_{f\sigma_8}\sim10\%$
Results for P23 are biased by $\sim-20\%$ due to non-gaussianity!
Results: adding the B21 variations covariance
Bias correction re-run for variations of BS21 parameters => new covariance term
$$\text{C}_{ij}^{\mu\mu, \mathrm{int. scat.}} = \Delta\mu_i^\mathrm{BS21}\Delta\mu_j^\mathrm{BS21} + \frac{1}{3}\sum_{p=1}^3\Delta\mu_i^{\mathrm{P23},p}\Delta\mu_j^{\mathrm{P23},p}$$ (from Vincenzi et al. 2024)