Image credits: ZTF.Caltech
Structure evolution :
Dark energy vs Gravity
Density contrast in linear theory:
$\delta(a, \mathbf{x}) = D(a)\tilde{\delta}(\mathbf{x})$
where $D(a) \equiv$ Growth factor
$\sigma_8 \propto D$
Density evolution rate
$f = \frac{d \ln D}{d\ln a}$
where $f(a) \equiv$ Growth rate
$f \simeq \Omega_m^\gamma$
with $\gamma \simeq 0.55$ for GR
Velocities as probes $f\sigma_8$:
$\nabla.v \propto f\sigma_8$
$1 + z_\mathrm{obs} = (1 + z_\mathrm{cos})\left(1 + \frac{v_p}{c}\right)$
Image credits: Illustris TNG
Use of ZTF existing observations as input for the simulation.
Includes observing strategy, filters, sky noise...
OuterRim N-body simulation:
27 mocks from the $\left(3~\mathrm{Gpc}.h^{-1}\right)^3$ box at $z=0$
The velocity estimator:
$$\hat{v} = -\frac{\ln(10)c}{5}\left(\frac{(1+z)c}{H(z)r(z)} - 1\right)^{-1}\Delta\mu$$
The velocity estimator:
$$\sigma_\hat{v} = -\frac{\ln(10)c}{5}\left(\frac{(1+z)c}{H(z)r(z)} - 1\right)^{-1}\sigma_\mu$$
\(\mathbf{p}_\mathrm{HD} = \left\{M_0, \alpha, \beta, \sigma_M\right\}\) are the SNe Ia Hubble diagram parameters
\(\mathbf{p} = \left\{f\sigma_8, \sigma_v, \sigma_u\right\}\) are growth-rate related parameters
\(C_{ij}(\mathbf{p}, \mathbf{p}_\mathrm{HD}) = C_{ij}^{vv}(f\sigma_8, \sigma_u) + (\sigma_v^2 + \sigma_\hat{v}^2(\mathbf{p}_{HD}))\delta_{ij}\) the covariance matrix
$C_{ij}^{vv} \propto (f\sigma_8)^2\int_0^{+\infty}{P_{\theta\theta}(k)D_u^2(k)W_{ij}(k) dk}$
The sample bias appears on Hubble diagram residuals at \(z \sim 0.06\) and grows up to \(\Delta\mu \sim -0.13\) at \(z \sim 0.12\)
It gives a positive bias on estimated peculiar velocities
That results to a bias on $f\sigma_8$
We can build a bias free sample by applying a redshift cut at \(z = 0.06\).
$\langle N_\mathrm{SN} \rangle \simeq 1620 \sim$ half of the sample
Results for our 27 mocks :
With only ~1600 SNe ZTF is at the same precision level than existing measurements with several thousands of galaxies !
Simulate a perfect correction of the bias:
The error on $f\sigma_8$ reduce from $17 \%$ to $15 \%$
Density drops rapidly after $z=0.06$ and errors on $\hat{v}_p$ increase ~linearly with $z$